Abstract

Biopolymers of hard, brittle and low flexible polyhydroxyalkanoates (PHAs) and a soft and high elastic natural-latex rubber are blended at room temperature by using a combination technique. Concentrations of the PHAs solution are constituted at 1%, 2% and 3% w/v and mingled with fresh natural latex in different ratios (PHAs : Latex Rubber = 0:10, 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1 and 10:0). After vigorous blending, forming polymeric sheets leave a dried-film pattern. Only the best 3 different ratios (4:6, 5:5 and 6:4) are selected by evaluating morphological-based information. These lead to actually define and characterize for their morphological and mechanical properties. The morphological attributes are exemplified by polarized optical microscopy and X-ray diffractometry (XRD) while the thermal characterization is determined by differential scanning calorimetry (DSC). Morphological analysis for the criterion of blending achievement indicated that there is a significant relationship among porosity, texture and shrinkage. The porosity shows obviously low to high for gradually increasing PHAs and decreasing the latex. Thus, dense texture and shrinkage relate to blending compositions between PHAs and latex. The XRD and DSC reveal certain aspects of decreasing crystallinity arising from enhancing of the latex content. A high degree of crystallinity and melting temperature relates to greater PHAs ratio. The mechanical investigations have revealed complex localization patterns of tensile strength and elastic modulus. The more PHAs concentration at 2% w/v indicates the greater elastic modulus than 3% and 1% w/v. Significant differences are found on polymeric composites of mechanical analyses between PHAs and natural latex. The constituted superiority in the ratio of 5:5 significantly differs in extension to break. Additionally, both tensile strength and elastic modulus of 2% w/v PHAs present the maximum value among them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.