Abstract
The growth of data collection in industrial processes has led to a renewed emphasis on the development of data-driven soft sensors. A key step in building an accurate, reliable soft sensor is feature representation. Deep networks have shown great ability to learn hierarchical data features using unsupervised pretraining and supervised fine-tuning. For typical deep networks like stacked auto-encoder (SAE), the pretraining stage is unsupervised, in which some important information related to quality variables may be discarded. In this article, a new quality-driven regularization (QR) is proposed for deep networks to learn quality-related features from industrial process data. Specifically, a QR-based SAE (QR-SAE) is developed, which changes the loss function to control the weights of the different input variables. By choosing an appropriate inductive bias for the weight matrix, the model provides quality-relevant information for predictive modeling. Finally, the proposed QR-SAE is used to predict the quality of a real industrial hydrocracking process. Comparative experiments show that QR-SAE can extract quality-related features and achieve accurate prediction performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.