Abstract
Synthesizers have become commonplace in music production due to their ability to create a diverse and unique timbre. However, many users find it difficult to control a synthesizer due to the complexity of the relationship between synthesis parameters and output sound. As such, the sound matching task focuses on the estimation of synthesis parameters that recreate the target sound as closely as possible within the capabilities of the synthesizer. In this paper, we introduce a quality-diversity approach to the problem of sound matching by introducing a novelty objective to genetic algorithm-based sound matching. We show that this QD method allows for the discovery of a collection of matches that are more diverse compared to matches found by standard genetic algorithms. These matches are spread across a space of interpretable spectral features, making it useful for the intuitive discovery of unique and useful matches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.