Abstract

This paper presents a risk-based approach for quality control planning of complex discrete manufacturing processes, to prevent massive scraps to occur. An analytical model is developed to optimize the quality control plan (QCP) subject to inspection capacity limitation and risk exposure objectives. The problem is then formulated as a constrained capacity allocation problem. A dedicated heuristic that solves a simplified instance of an industrial case study, from semiconductor manufacturing, is presented to provide insights into the applicability and the operational use of the approach and its potential gains in terms of risk exposure reduction. The main advancement resulting from this work is the proposal of a model of quality control allocation and an understandable algorithm to prevent the production of excessive amounts of scrap. The industrial illustration shows a decrease in potential losses by a factor of 3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call