Abstract

White cell (WBC) degradation restricts the interval between the filtration process and the assay for residual WBCs. Maintaining WBC integrity would permit extended sample storage for batching and/or shipment to centralized laboratories. The usual quality control assay for WBC-reduced red cell units requires determining the number of WBCs in the entire counting area of a Nageotte hemocytometer, which consists of 40 rows. Reducing the counting area would simplify the quality control procedure. Adsol red cell units were prepared either on the day of collection (Day 0) or on Day 1 and WBC reduced by filtration on the same day. By using prefiltration and postfiltration red cells, samples containing WBC concentrations of 15, 10, and 3 WBCs per microL were prepared by serial dilution. Identical samples were treated with glutaraldehyde and stored at either 20 to 24 degrees C or 1 to 6 degrees C. All samples were assayed on the day of component preparation and on Days 7 and 14. The numbers of WBCs corresponding to 10- and 40-row areas of the Nageotte hemocytometer were determined. For the conditions and WBC concentration range studied, no significant changes in WBC concentrations were observed through Day 14 for glutaraldehyde-treated samples stored at either temperature, although there were substantial decreases in untreated samples. A 10-row measurement was determined to be sufficient for identifying WBC-reduced red cell units passing the present limit of 5 x 10(6) residual WBCs. Glutaraldehyde treatment can preserve WBCs in red cell samples at least up to Day 14, which provides increased efficiency in quality control for laboratories. Current red cell WBC-reduction filters produce components that, when assayed, contain fewer than 10 WBCs per full counting area. The simplified procedure would allow reduction of the counting area by 75 percent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call