Abstract

Vertically aligned carbon nanotube (VACNT) has been proposed as a promising material for electrical interconnection and heat dissipation, because of its high electrical and thermal conductivity. Defects and impurities in synthesized VACNT, however, lead to unsatisfactory performance in these applications. To improve the quality of VACNT, we systematically studied the effects of various growth parameters on the quality of VACNT, including growth temperature, the amount of water vapor, carbon source, and hydrogen gas. By tailoring these parameters, we successfully synthesized high-quality VACNTs that were confirmed by Raman spectroscopy and thermogravimetric analysis. These findings might be helpful for the applications of VACNT in many fields. VACNT-based thermal interface material was successfully made and a low thermal resistance of ~9.0 mm2KW-1 suggests VACNTs' promising potentials in current demanding thermal management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call