Abstract
Degradation of the reaction center-binding D1 protein of Photosystem II is central in photoinhibition of Photosystem II. In higher plant chloroplasts, Photosystem II complexes are abundant in the grana. It has been suggested that the Photosystem II complexes containing photodamaged D1 protein migrate for their repair from the grana to the non-appressed stroma thylakoids, where the photodamaged D1 protein is degraded by a specific protease(s) such as filamentation temperature sensitive H (FtsH) protease. There are several possible ways to activate the FtsH proteases. As FtsH is a membrane-bound ATP-dependent metalloprotease, it requires ATP and zinc as essential part of its catalytic mechanism. It is also suggested that a membrane protein(s) associated with FtsH is required for modulation of the FtsH activity. Here, we propose several possible mechanisms for activation of the proteases, which depend on oligomerization of the monomer subunits. In relation to the oligomerization of FtsH subunits, we also suggest unique distribution of active FtsH hexamers on the thylakoids: hexamers of the FtsH proteases are localized near the Photosystem II complexes at the grana. Degradation of the D1 protein probably takes place in the grana rather than in the stroma thylakoids to circumvent long-distance migration of both the Photosystem II complexes containing the photodamaged D1 protein and the proteases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology B: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.