Abstract
ABSTRACT Rain gauge networks provide direct precipitation measurements and have been widely used in hydrology, synoptic-scale meteorology, and climatology. However, rain gauge observations are subject to a variety of error sources, and quality control (QC) is required to ensure the reasonable use. In order to enhance the automatic detection ability of anomalies in data, the novel multi-source data quality control (NMQC) method is proposed for hourly rain gauge data. It employs a phased strategy to reduce the misjudgment risk caused by the uncertainty from radar and satellite remote-sensing measurements. NMQC is applied for the QC of hourly gauge data from more than 24,000 hydro-meteorological stations in the Yangtze River basin in 2020. The results show that its detection ratio of anomalous data is 1.73‰, only 1.73% of which are suspicious data needing to be confirmed by experts. Moreover, the distribution characteristics of anomaly data are consistent with the climatic characteristics of the study region as well as measurement and maintenance modes of rain gauges. Overall, NMQC has a strong ability to label anomaly data automatically, while identifying a lower proportion of suspicious data. It can greatly reduce manual intervention and shorten the impact time of anomaly data in the operational work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.