Abstract

Additive manufacturing (AM) of high-strength metals is currently based on the laser powder bed fusion (LPBF) process, which can introduce internal material flaws, such as pores and anisotropy. Quality control (QC) requires nondestructive evaluation of actual AM structures. Flash thermography is a potentially promising QC technique because it is scalable to arbitrary structure size. However, the detection sensitivity of this method is limited by noise. We investigate separation of signal from noise in thermography images using several machine learning (ML) methods, including new spatial–temporal blind source separation and spatial–temporal sparse dictionary learning methods. Performance of the ML methods is benchmarked using thermography data obtained from imaging stainless steel 316L and Inconel 718 specimens produced by the LPBF method with imprinted calibrated porosity defects. The ML methods are ranked by F-score and execution runtime. The ML methods with higher accuracy require a longer runtime. However, this runtime is sufficiently short to perform QC within a realistic time frame.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call