Abstract

This study was carried out to develop a hyperspectral imaging system in the near infrared (NIR) region (900–1700 nm) to assess the quality of cooked turkey hams of different ingredients and processing parameters. Hyperspectral images were acquired for ham slices originated from each quality grade and then their spectral data were extracted. Spectral data were analyzed using principal component analysis (PCA) to reduce the high dimensionality of the data and for selecting some important wavelengths. Out of 241 wavelengths, only eight wavelengths (980, 1061, 1141, 1174, 1215, 1325, 1436 and 1641 nm) were selected as the optimum wavelengths for the classification and characterization of turkey hams. The data analysis showed that it is possible to separate different quality turkey hams with few numbers of wavelengths on the basis of their chemical composition. The results revealed the potentiality of NIR hyperspectral imaging as an objective and non-destructive method for the authentication and classification of cooked turkey ham slices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.