Abstract

Imaging techniques can be applied to multicrystalline silicon solar cells throughout the production process, which includes as early as when the bricks are cut from the cast ingot. Photoluminescence (PL) imaging of the band-to-band radiative recombination is used to characterize silicon quality and defects regions within the brick. PL images of the brick surfaces are compared to minority-carrier lifetimes measured by resonant-coupled photoconductive decay (RCPCD). RCPCD is a transient photoconductive decay technique that monitors the recombination of excess carriers using a frequency of about 420 MHz. Carriers are excited by nanosecond laser pulses of long-wavelength light in the range of 1150 nm. The low frequency and long penetration depth of light promote measurement of carriers away from the surface such that lifetimes of up to 100 µs are measured in upgraded-metallurgical-grade silicon, and up to 200 µs in electronic-grade silicon bricks. PL intensity shows correlation to lifetime in addition to the valuable spatial information from top to bottom of the brick and defect regions throughout the brick.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.