Abstract

The nutrient composition and the acceptability of biscuit from composite flours of wheat, Bambara groundnut (Vigna subterranea), Ground bean seed (Macrotyloma) and Moringa seed (Moringa oleifera) were evaluated. Bambara groundnut (Vigna subterranea), Ground bean seed (Macrotyloma) and Moringa seed (Moringa oleifera) were dried, and processed into flour. The flour blends developed was used as a substitute for wheat flour as composite flour. The resulting mixtures were then used to produce biscuits at different ratios of wheat flour to flour blends; 100:0, 90:10, 80:20 and 70:30 level of the flour blends. The pasting properties, proximate composition, minerals, physical (spread ratio, weight, thickness and colour) and sensory properties of the composite biscuit were evaluated. The pasting properties of the flours showed that pasting temperature ranged from 68.50°C - 70.0°C and the peak viscousity range from 101.17 RVU – 207.17 RVU, while Break down (43.0 RVU) was highest in 90% wheat: 10% (Bambara- groundnut-ground bean seed- moringa seed flour) (WFF1). The protein content increased from 12.50% in the control (100% wheat flour) to a range of 14.40% - 16.19% in the biscuits; crude fibre decreased from 2.83 to 2.40 - 1.84%, ash content increased from 1.26% to a range of 1.53 - 2.01%, while carbohydrate and energy value reduced from 69.20 to 65.54 - 63.36% and 384.04 Kcal/100 g to 391.34 - 391.55 Kcal/100 g respectively. As the ratio of blends level increase, the thickness, diameter and weight increased but the spread ratio decreased. In conclusion incorporation of bambara groundnut, ground bean seed and moringa seed flour blends played important role in enhancing the nutritional properties of biscuits through improving their protein content, energy value and mineral elements especially calcium and potassium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.