Abstract

Blending two or more materials to create better high-moisture meat analogues has been actively studied in the food science and technology field. Walnut protein is a high-quality plant-based protein resource, yet its full potential remains underexploited. Thus, this study focused on exploring the quality characteristics and fibrous structure formation mechanism of walnut protein (WP) and wheat gluten (WG) meat analogues during high-moisture extrusion cooking process. Results showed that the optimized WP and WG-blended high-moisture meat analogues exhibited a more pronounced anisotropic and oriented fibrous structure. The blending of WP and WG can protect the molecular chains from the thermal transition, and promote the aggregation of protein molecules mainly by enhancing the interaction between hydrophobic interactions and hydrogen bonds, increasing the apparent viscosity and forming protein subunits with larger molecular weights (>100 kDa) to stabilize the newly formed conformation. Additionally, the content of α-helix was the highest among the secondary structures. This study provides a theoretical basis for the application of WG and WP to produce HMMAs with rich fibrous structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.