Abstract

Mobile video traffic has experienced explosive growth in recent years due to the rapid development of mobile intelligent terminals and cellular communication technologies. The rapid growth of mobile video traffic has brought significant energy expenditure for mobile network operators. To reduce the energy expenditure, one promising solution is to exploit renewable energy harvested from surrounding environments for cellular traffic delivery. In this article, we investigate mobile video streaming in green cellular networks with hybrid energy sources, i.e., grid energy and ambient energy, to optimize both video quality and energy expenditure. Specifically, we formulate a stochastic optimization problem to maximize the long-term time-averaged network service utility, which is the difference of video quality and energy expenditure. The problem formulation takes the following factors into account: time-varying grid electricity price, energy harvesting process, and different time scales of rate adaptation (RA), resource management, and electricity price fluctuation. We exploit Lyapunov optimization framework to decompose the problem into three subproblems: 1) RA subproblem; 2) battery energy management subproblem; and 3) joint power control and subchannel assignment subproblem. We propose an efficient online green video streaming algorithm to solve these subproblems. We analyze the stability of the proposed algorithm with respect to lengths of energy queue and user request queues. Extensive simulations are conducted and the results validate the efficiency of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.