Abstract
BackgroundThe objective of this study was to demonstrate the utility of an approach in training predoctoral medical students, to enable them to measure electrode-to-modiolus distances (EMDs) and insertion-depth angles (aDOIs) in cochlear implant (CI) imaging at the performance level of a single senior rater.MethodsThis prospective experimental study was conducted on a clinical training dataset comprising patients undergoing cochlear implantation with a Nucleus® CI532 Slim Modiolar electrode (N = 20) or a CI512 Contour Advance electrode (N = 10). To assess the learning curves of a single medical student in measuring EMD and aDOI, interrater differences (senior–student) were compared with the intrarater differences of a single senior rater (test–retest). The interrater and intrarater range were both calculated as the distance between the 0.1th and 99.9th percentiles. A “deliberate practice” training approach was used to teach knowledge and skills, while correctives were applied to minimize faulty data-gathering and data synthesis.ResultsIntrarater differences of the senior rater ranged from − 0.5 to 0.5 mm for EMD and − 14° to 16° for aDOI (respective medians: 0 mm and 0°). Use of the training approach led to interrater differences that matched this after the 4th (EMD) and 3rd (aDOI) feedback/measurement series had been provided to the student.ConclusionsThe training approach enabled the student to evaluate the CI electrode position at the performance level of a senior rater. This finding may offer a basis for ongoing clinical quality assurance for the assessment of CI electrode position.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.