Abstract

Front-face fluorescence spectroscopy (FFFS) was evaluated as a quality assurance process analytical technology (PAT) tool for infant milk formula (IMF) manufacture. Batches of first-stage IMF (60:40 whey protein:casein ratio) powder were produced with protein:fat:lactose ratios of 1.3:3.6:7.3, differing only in heat treatment applied prior to spray drying (72, 95, or 115 °C for 15 s). Each IMF powder was stored at 15 ± 2 °C and 37 ± 2 °C and analyzed at months 0, 3, 6, and 12. Partial least squares (PLS) models were developed for IMF in both powder and liquid states using FFFS spectra to predict pre-drying heat treatment temperature, soluble protein content, and storage time. Models developed using tryptophan emission spectra for IMF powder predicted storage time, pre-drying heat treatment temperature, and soluble protein content with RMSECV values of 0.3 months, 8.3 °C, and 1.01 g protein/100 g powder, respectively. IMF powders were rehydrated to 13% total solids and analyzed using the vitamin A emission spectra. Models developed for rehydrated IMF predicted storage time and pre-drying heat treatment temperature with RMSECV values of 1.5 months and 6.7 °C, respectively. Surface free fats were predicted with an RMSECV range of 0.12–0.20% (w/w of powder) in rehydrated IMF. PLS discriminant analysis models developed for both powder and liquid IMF samples successfully discriminated for storage temperature. This preliminary study demonstrates the strong potential of FFFS as a PAT tool for IMF quality assurance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call