Abstract

The Himalayan dry toilet system prevalent in the northwestern Himalaya is a traditional practice of converting human faeces into a compost-like soil amendment. The current study evaluated night-soil compost (NSC) for agricultural use by assessing the compost quality, safety, and microbiome properties. Based on the fertility and clean indices determined by the fertility and heavy metal parameters, NSC was categorized as good quality compost with high fertilizing potential and moderate concentration of heavy metals. With respect to pathogens, the faecal coliform levels in the NSC were categorized as safe according to the U.S. Environmental Protection Agency standards. The bacterial community structure based on 16S rRNA gene amplicons revealed a diverse taxonomy with 14 phyla and 54 genera in NSC. Compared to publicly available 16S rRNA gene amplicon data, NSC exhibited predominant phyla (Proteobacteria, Bacteriodetes, Actinobacteria, and Firmicutes) similar to human faeces, cattle manure, food waste compost, vermicompost, and activated sludge. However, statistically, NSC was distinct at the genus level from all other groups. Additionally, pathogenic bacteria with antimicrobial resistance (AMR) genes in the NSC metagenome were determined by performing a standalone BLASTN against the PATRIC database. The analysis revealed 139 pathogenic strains with most pathogens susceptible to antibiotics, indicating lower AMR in the predicted strains. The phytotoxicity of NSC with Pisum sativum var. AS-10 seeds showed a germination index of > 85%, indicating NSC's non-harmful effects on seed germination and root growth. Overall, NSC from Himalayan dry toilets can be used as a soil amendment for food and non-food plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call