Abstract

OpenStreetMap (OSM) data are geographical data that are easy and open to access and therefore used for a large set of applications including travel demand modeling. However, often there is a limited awareness about the shortcomings of volunteered geographic information data, such as OSM. One important issue for the application in travel demand modeling is the completeness of OSM elements, particularly points of interest (POI), since it directly influences the predictions of trip distributions. This might cause unreliable model sensitivities and end up in wrong predictions leading to expensive misinterpretations of the effects of policy measures. Because of a lack of large-scale real-world data, a detailed assessment of the quality of POI from OSM has not been done yet. Therefore, in this work, we assess the quality of POI from OSM for use within travel demand models using surveyed real-world data from 49 areas in Germany. We perform a descriptive and a model-based analysis using spatial, demographic, and intrinsic indicators for two common trip purpose categories used in travel demand modeling. We show that the completeness of POI data in OSM depends on the category of POI. We further show that intrinsic indicators and indicators calculated based on data from other sources (e.g., land use or census data) are able to detect quality deficiencies of OSM data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.