Abstract

In microarray data, gene selection can make data analysis efficient and biological interpretations of the selected genes can be very useful. However, microarray data have typically several thousands of genes but only tens of samples, referred to as a small sample-size problem. In this paper, we discuss some problems on gene selection that can occur owing to a small sample size: whether gene selection relying on the extremely small number of samples is reliable and meaningful. Experimental comparisons of well-known three gene selection methods show that classification performances can be very sensitive to training samples and preprocessing steps. We also measure consistency in gene ranking under the changes of training samples or different selection criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.