Abstract

Flow cytometry (FCM) has become very powerful over the last decades, enabling multi-parametric measurements of up to thousands of cells per second. This generates massive amounts of data on individual cell characteristics that need to be analyzed in an efficient manner from both physiological and chemical points of view. In this study, a methodology of analysis for FCM data was comprehensively studied to assess quality changes in semen extracted from boars. The proposed methodology combines new automated multi-dimensional data normalization, a density-based clustering method for identification of cell populations, and multivariate methods for post-analysis of the identified populations, enabling the exploratory evaluation and prediction/classification of subpopulations within the experimental data set. The performance of the suggested methodology was compared with the performance of an existing automated clustering method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.