Abstract

Abstract This paper investigates trajectory generation for multi-robot systems that handle compliant parts in order to minimise deformations during handling, which is important to reduce the risk of affecting the part’s dimensional quality. An optimisation methodology is proposed to generate deformation-minimal multi-robot coordinated trajectories for predefined robot paths and cycle-time. The novelty of the proposed optimisation methodology is that it efficiently estimates part deformations using a precomputed Response Surface Model (RSM), which is based on data samples generated by Finite Element Analysis (FEA) of the handled part and end-effector. The end-effector holding forces, plastic part deformations, collision-avoidance and multi-robot coordination are also considered as constraints in the optimisation model. The optimised trajectories are experimentally validated and the results show that the proposed optimisation methodology is able to significantly reduce the deformations of the part during handling, i.e. up to 12% with the same cycle-time in the case study that involves handling compliant sheet metal parts. This investigation provides insights into generating specialised trajectories for material handling of compliant parts that can systematically minimise part deformations to ensure final dimensional quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call