Abstract
The optimization of functions to find the best solution according to one or several objectives has a central role in many engineering and research fields. Recently, a new family of optimization algorithms, named quality-diversity (QD) optimization, has been introduced, and contrasts with classic algorithms. Instead of searching for a single solution, QD algorithms are searching for a large collection of both diverse and high-performing solutions. The role of this collection is to cover the range of possible solution types as much as possible, and to contain the best solution for each type. The contribution of this paper is threefold. First, we present a unifying framework of QD optimization algorithms that covers the two main algorithms of this family (multidimensional archive of phenotypic elites and the novelty search with local competition), and that highlights the large variety of variants that can be investigated within this family. Second, we propose algorithms with a new selection mechanism for QD algorithms that outperforms all the algorithms tested in this paper. Lastly, we present a new collection management that overcomes the erosion issues observed when using unstructured collections. These three contributions are supported by extensive experimental comparisons of QD algorithms on three different experimental scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Transactions on Evolutionary Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.