Abstract

The study investigated the leaching and biodegradation of dissolved organic carbon in leaf leachates from typical fresh leaves in the Wuhan Urban Forest Park, Central China. The fresh leaf-leached dissolved organic carbon quality and biodegradability, as well as their potential determinants, were examined for 12 major tree species, including deciduous trees and shrubs. A 28-day indoor incubation was conducted at two temperature conditions of 20 °C and 30 °C. Sampling was conducted within the planned time frame for experimental measurements, and a first-order kinetic model for dissolved organic carbon degradation was fitted. The utilization of the fir tree as the predominant deciduous species and cuckoo as the primary shrubs provided advantages in increasing the carbon sequestration capacity of urban forests. There was no significant difference in the degradation rate of the leaching solution at different temperatures, but the k value of the first-order kinetic model was different. At 20 °C, the dissolved organic carbon degradation rate was positively correlated with electrical conductivity and total dissolved nitrogen, while it was negatively correlated with the humification index and ratio of dissolved organic carbon to total dissolved nitrogen. At 30 °C, the degradation rate of dissolved organic carbon showed a positive correlation with total dissolved phosphorus and total dissolved nitrogen, while it was negatively correlated with the humification index, ratio of dissolved organic carbon to total dissolved nitrogen and ratio of dissolved organic carbon to total dissolved phosphorus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.