Abstract

ABSTRACTQuality and agronomic effects of three transgenic high molecular weight glutenin subunit (HMW‐GS) events were characterized in advanced‐generation breeding lines of hard winter wheat (Triticum aestivum L.) in three Nebraska crop years. Two of the transgenic events studied, Dy10‐E and B52a‐6, overexpress HMW‐GS 1Dy10, while the third event, Dx5 +Dy10‐H, overexpresses HMW‐GS 1Dx5 and, to a much lesser extent, 1Dy10. In addition, novel proteins possessing solubility characteristics defined as HMW‐GS were present in Dx5+Dy10‐H and B52a‐6. Average grain yield of lines derived from the three transgenic events was statistically lower than that of a group of control cultivars and advanced breeding lines, but not lower than the mean values of respective nontransgenic siblings. Grain hardness was influenced by one of the events. Dx5+Dy10‐H produced harder kernels than controls, its nontransgenic siblings, and the two additional transgenic events. All three events produced doughs with unusual mixing properties, although not likely to be directly useful in commercial applications. As a consequence, loaf volumes were depressed to variable degrees by the three events. The results indicated that over‐expression of HMW‐GS could eventually lead to improved breadmaking quality by optimizing the level of overexpression or by development and characterization of additional events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.