Abstract

A sensitive and selective HPLC method for the assay and degradation of salmon calcitonin, a 32-amino acid peptide drug, formulated at low concentrations (400 ppm m/m) in a bioadhesive nasal powder containing polymers, was developed and validated. The sample preparation step was optimized using Plackett–Burman and Onion experimental designs. The response functions evaluated were calcitonin recovery and analytical stability. The best results were obtained by treating the sample with 0.45% (v/v) trifluoroacetic acid at 60 °C for 40 min. These extraction conditions did not yield any observable degradation, while a maximum recovery for salmon calcitonin of 99.6% was obtained. The HPLC-UV/MS methods used a reversed-phase C 18 Vydac Everest column, with a gradient system based on aqueous acid and acetonitrile. UV detection, using trifluoroacetic acid in the mobile phase, was used for the assay of calcitonin and related degradants. Electrospray ionization (ESI) ion trap mass spectrometry, using formic acid in the mobile phase, was implemented for the confirmatory identification of degradation products. Validation results showed that the methodology was fit for the intended use, with accuracy of 97.4 ± 4.3% for the assay and detection limits for degradants ranging between 0.5 and 2.4%. Pilot stability tests of the bioadhesive powder under different storage conditions showed a temperature-dependent decrease in salmon calcitonin assay value, with no equivalent increase in degradation products, explained by the chemical interaction between salmon calcitonin and the carbomer polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.