Abstract
Social media, e-commerce, and other online platforms have witnessed tremendous growth in multilingual users. This requires addressing the code-mixing phenomenon, i.e. mixing of more than one language for providing a rich native user experience. User reviews and comments may benefit service providers in terms of customer management. Aspect based Sentiment Analysis (ABSA) provides a fine-grained analysis of these reviews by identifying the aspects mentioned and classifies the polarities (i.e., positive, negative, neutral, and conflict). The research in this direction has mainly focused on resource-rich monolingual languages like English, which does not suffice for analyzing multilingual code-mixed reviews. In this paper, we introduce a new task to facilitate the research on code-mixed ABSA. We offer a benchmark setup by creating a code-mixed Hinglish (i.e., mixing of Hindi and English) dataset for ABSA, which is annotated with aspect terms and their sentiment values. To demonstrate the effective usage of the dataset, we develop several deep learning based models for aspect term extraction and sentiment analysis, and establish them as the baselines for further research in this direction. 11Codes and the complete dataset have been made available on https://www.iitp.ac.in/~ai-nlp-ml/resources.html and at Github repository: https://github.com/20118/ABSA-MIX.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.