Abstract

Dynamic models of many processes in the biological and physical sciences which depend on local mass balance conditions give rise to systems of ordinary differential equations, many nonlinear, that are called compartmental systems. In this paper, the authors define compartmental systems, specify their relations to other nonnegative systems, and discuss examples of applications.The authors review the qualitative results on linear and nonlinear compartmental systems, including their relation to cooperative systems. They review the results for linear compartmental systems and then integrate and expand the results on nonlinear compartmental systems, providing a framework for unifying them under a few general theorems. In the course of that they complete the solution of a problem posed by Bellman and show that closed nonlinear, autonomous, n-compartment systems can show the full gamut of possible behaviors of systems of ODES.Finally, to provide additional structure to this study, the authors show how to partiti...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.