Abstract

Abstract Based on a series of cyclic differential scanning calorimetry analyses together with thermogravimetric analyses, the effects of carbon nano-powder and moisture on the glass transition temperature of a polyurethane shape memory polymer were separated and qualitatively identified. This approach should be applicable to other polyurethane polymers and their composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.