Abstract
Bombieri’s numbers σmn characterize a behavior of the coefficient body for the class S of all holomorphic and univalent functions f in the unit disk normalized by f(z) = z + a2z2 + …. The number σmn is the limit of ratio for Re(n − an) and Re (m − am) as f tends to the Koebe function K(z) = z(1 − z)−2. It is showed in the paper that Bombieri’s conjecture about explicit values of σmn implies a sliding regime in an associated control theory problem generated by the Loewner differential equation. We develop also an asymptotical approach in verification of necessary criteria for Bombieri’s conjecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.