Abstract

In previous work, we studied four well known systems of qualitative probabilistic inference, and presented data from computer simulations in an attempt to illustrate the performance of the systems. These simulations evaluated the four systems in terms of their tendency to license inference to accurate and informative conclusions, given incomplete information about a randomly selected probability distribution. In our earlier work, the procedure used in generating the unknown probability distribution (representing the true stochastic state of the world) tended to yield probability distributions with moderately high entropy levels. In the present article, we present data charting the performance of the four systems when reasoning in environments of various entropy levels. The results illustrate variations in the performance of the respective reasoning systems that derive from the entropy of the environment, and allow for a more inclusive assessment of the reliability and robustness of the four systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.