Abstract

PurposeThe purpose of this paper is to propose a method of qualitative ferrographic analysis by quantitative parameters of wear debris characteristics.Design/methodology/approachThe amount of the wear debris needed for analysis on the ferrogram made by rotary ferrograph is discussed based on the theory of debris group. Quantitative parameters are constituted to express the characteristics of wear debris group, and correlation coefficients are employed to establish the relationship between wear debris and wear condition. The reliability of the method was verified by wear test experiments and ferrographic analysis.FindingsThe wear condition of machines should be determined by studying all the debris together as a group rather than by focusing on individual debris. In the proposed method, the qualitative analysis result is obtained by synthetic analysis of quantitative parameters of wear debris characteristics using a computer program, which makes the judgment of the wear system condition more objective and precise.Research limitations/implicationsIn the procedure of wear condition monitoring by the proposed method, because the weight factors and correlation coefficients introduced in this paper are determined according to the experiences deriving from practice among mining machinery, further rectifications may be needed if they are applied to other industrial field.Originality/valueThe paper illustrates a more objective and precise ferrographic analysis method for wear condition monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.