Abstract

A formulation of a multiconfiguration time-dependent Hartree-Fock (MCTDHF) method with nuclear motion is tested by application to a three-body breakup problem, the dissociative photoionization cross section of the ${\mathrm{H}}_{2}^{+}$ ion. The representation of the wave function in terms of a set of Slater determinants used for all nuclear geometries, with a prescribed parametric dependence upon the nuclear geometry such that the cusps follow the nuclei, times a complete basis expansion in the nuclear degrees of freedom shows promise as a method for treating nonadiabatic electronic and nuclear motion in molecules. However, the method used here for diatomics, in which the parametric dependence is prescribed through the choice of prolate spheroidal coordinates, produces qualitatively incorrect steplike behavior in the calculated cross section near onset. Modifications to the prolate spheroidal coordinate system that would improve this nonadiabatic diatomic MCTDHF representation are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.