Abstract

The localization of calcium and calcium-activated ATPases was investigated electron microscopically in the medial habenula of mice after whole body irradiation with modulated microwaves. In non-irradiated animals calcium-containing precipitates were seen in different subcellular compartments and were often localized on the luminal side of membranes of synaptic vesicles in nerve terminals. At 1 h after 16-Hz modulated microwave irradiation, the number of synaptic vesicles containing calcium precipitates decreased, and reaction products appeared at new locations: in the synaptic clefts and on non-synaptic surfaces of the neuronal plasma membrane. This modified calcium distribution remained unchanged for 24 h following irradiation. Calcium-activated "ecto"-localized ATPase was detected as a punctuated-linear distribution of the reaction product outlining whole areas of glial and neuronal plasma membrane in the habenula of control animals. This pattern did not change on microwave irradiation. However, a quercetin-sensitive "endo"-localized Ca(2+)-ATPase activity appeared in some nerve terminals 24 h after irradiation. Thus, microwave irradiation can influence neuronal calcium homeostasis by inducing Ca2+ redistribution across the plasma membrane and by modifying Ca(2+)-ATPase activity. However, no direct correlation between these effects could be demonstrated by the present study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call