Abstract

Durum wheat milling is a key process step to improve the quality and safety of final products. The aim of this study was to characterize three bran-enriched milling fractions (i.e., F250, G230 and G250), obtained from three durum wheat grain samples, by using an innovative micronization and air-classification technology. Milling fractions were characterized for main standard quality parameters and for alveographic properties, starch composition and content, phenolic acids, antioxidant activity and ATIs. Results showed that yield recovery, ash content and particle size distributions were influenced either by the operating conditions (230 or 250) or by the grain samples. While total starch content was lower in the micronized sample and air-classified fractions, the P/L ratio increased in air-classified fractions as compared to semolina. Six main individual phenolic acids were identified through HPLC-DAD analysis (i.e., ferulic acid, vanillic acid, p-coumaric acid, sinapic acid, syringic and p-hydroxybenzoic acids). Compared to semolina, higher contents of all individual phenolic components were found in all bran-enriched fractions. The highest rise of TPAs occurred in the F250 fraction, which was maintained in the derived pasta. Moreover, bran-enriched fractions showed significant reductions of ATIs content versus semolina. Overall, our data suggest the potential health benefits of F250, G230 and G250 and support their use to make durum-based foods.

Highlights

  • Durum wheat (Triticum turgidum L. ssp. durum) is an important crop, especially in the Mediterranean basin, as it is used for the production of daily foods, such as pasta, couscous, bulgur, and unleavened and leavened bread

  • We evaluated several qualitative features of F250, G230 and G250 airclassified fractions as compared to semolina and micronized samples

  • Total starch content was lower in micronized flour and in all air-classified fractions compared to semolina

Read more

Summary

Introduction

Durum wheat (Triticum turgidum L. ssp. durum) is an important crop, especially in the Mediterranean basin, as it is used for the production of daily foods, such as pasta, couscous, bulgur, and unleavened and leavened bread. Durum wheat grain contains several bioactive compounds of health interest, such as insoluble fiber, phenolic acids, and alkylresorcinols, which are mostly concentrated within the coating structure of the kernel [1]. Phenolic acids are among the most abundant and studied components promoting human health As dietary antioxidants, they act as free-radical scavengers [2,3], and reduce the inflammatory response in endothelial cells and monocytes [4]. They act as free-radical scavengers [2,3], and reduce the inflammatory response in endothelial cells and monocytes [4] Besides their antioxidant and antiradical activity, phenolic acids participate in plant cell walls as structural components and are involved in plant adaptation to abiotic and biotic stresses [5,6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call