Abstract

We study qualitative aspects of the Welschinger-like $\mathbb Z$-valued count of real rational curves on primitively polarized real $K3$ surfaces. In particular, we prove that with respect to the degree of the polarization, at logarithmic scale, the rate of growth of the number of such real rational curves is, up to a constant factor, the rate of growth of the number of complex rational curves. We indicate a few instances when the lower bound for the number of real rational curves provided by our count is sharp. In addition, we exhibit various congruences between real and complex counts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.