Abstract

The aim of this paper is to define the initial quantitative and qualitative multidimensional model for evaluating basic contractile characteristics of isometric muscle force in systematically trained and selected cadet judo athletes. In this research absolute values of the obtained results, and values derived by relativization of absolute values in relation to skeletal muscle mass (SMM) were considered. The basic method used in this research was laboratory testing. All data sampling was performed by the dynamometry method, using tensiometric probes. The research sample in this study consisted of 21 cadet judo athletes, of which 14 were male and 7 were female. All measurements were performed using standardized testing procedures on the following muscle groups: flexor muscles of the left (HGL) and the right hand (HGR), back (DL) and leg extensor muscles (LE) and ankle joint plantar flexor muscles (PF). Based on the obtained results, separate multidimensional mathematical models for the estimation of contractile potential and development level were defined for both basic characteristics of isometric muscle force: maximal isometric muscle force (Fmax) and maximal explosive isometric muscle force (RFDmax). A qualitative assessment of contractile potential for each of the tested muscle groups, i.e. variables, was enabled by defining standard values for 7 distinct preparedness levels for both basic isometric muscle force contractile characteristics of male and female cadet judo athletes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.