Abstract

Because of its assumed role in breast cancer etiology, estrogen biotransformation (and interaction of compounds therewith) has been investigated in human biospecimens for decades. However, little attention has been paid to the well-known fact that large inter-individual variations exist in the proportion of breast glandular (GLT) and adipose (ADT) tissues and less to adequate tissue characterization. To assess the relevance of this, the present study compares estrogen biotransformation in GLT and ADT. GLT and ADT were isolated from 47 reduction mammoplasty specimens derived from women without breast cancer and were characterized histologically and by their percentages of oil. Levels of 12 unconjugated and five conjugated estrogens were analyzed by GC- and UHPLC-MS/MS, respectively, and levels of 27 transcripts encoding proteins involved in estrogen biotransformation by Taqman® probe-based PCR. Unexpectedly, one-third of specimens provided neat GLT only after cryosection. Whereas 17β-estradiol, estrone, and estrone-3-sulfate were detected in both tissues, estrone-3-glucuronide and 2-methoxy-estrone were detected predominately in GLT and ADT, respectively. Estrogen levels as well as ratios 17β-estradiol/estrone and estrone-3-sulfate/estrone differed significantly between GLT and ADT, yet less than between individuals. Furthermore, estrogen levels in GLT and ADT correlated significantly with each other. In contrast, levels of most transcripts encoding enzymes involved in biotransformation differed more than between individuals and did not correlate between ADT and GLT. Thus, mixed breast tissues (and plasma) will not provide meaningful information on local estrogen biotransformation (and interaction of compounds therewith) whereas relative changes in 17β-estradiol levels may be investigated in the more abundant ADT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.