Abstract

BackgroundNumerous electrophysiological, ultrastructural, and immunocytochemical studies on rodent taste buds have been carried out on rat taste buds. In recent years, however, the mouse has become the species of choice for molecular and other studies on sensory transduction in taste buds. Do rat and mouse taste buds have the same cell types, sensory transduction markers and synaptic proteins? In the present study we have used antisera directed against PLCβ2, α-gustducin, serotonin (5-HT), PGP 9.5 and synaptobrevin-2 to determine the percentages of taste cells expressing these markers in taste buds in both rodent species. We also determined the numbers of taste cells in the taste buds as well as taste bud volume.ResultsThere are significant differences (p < 0.05) between mouse and rat taste buds in the percentages of taste cells displaying immunoreactivity for all five markers. Rat taste buds display significantly more immunoreactivity than mice for PLCβ2 (31.8% vs 19.6%), α-gustducin (18% vs 14.6%), and synaptobrevin-2 (31.2% vs 26.3%). Mice, however, have more cells that display immunoreactivity to 5-HT (15.9% vs 13.7%) and PGP 9.5 (14.3% vs 9.4%). Mouse taste buds contain an average of 85.8 taste cells vs 68.4 taste cells in rat taste buds. The average volume of a mouse taste bud (42,000 μm3) is smaller than a rat taste bud (64,200 μm3). The numerical density of taste cells in mouse circumvallate taste buds (2.1 cells/1000 μm3) is significantly higher than that in the rat (1.2 cells/1000 μm3).ConclusionThese results suggest that rats and mice differ significantly in the percentages of taste cells expressing signaling molecules. We speculate that these observed dissimilarities may reflect differences in their gustatory processing.

Highlights

  • Numerous electrophysiological, ultrastructural, and immunocytochemical studies on rodent taste buds have been carried out on rat taste buds

  • Serotonin (5-HT) Serotonin-like immunoreactivity (LIR) is present in a small subset of taste cells in rodent taste buds

  • Our results show that a small subset of slender taste cells display serotonin-like immunoreactivity (LIR) in both rat and mouse circumvallate taste buds

Read more

Summary

Introduction

Ultrastructural, and immunocytochemical studies on rodent taste buds have been carried out on rat taste buds. Do rat and mouse taste buds have the same cell types, sensory transduction markers and synaptic proteins? In the present study we have used antisera directed against PLCβ2, α-gustducin, serotonin (5-HT), PGP 9.5 and synaptobrevin-2 to determine the percentages of taste cells expressing these markers in taste buds in both rodent species. Type I cells in rodents are slender and possess an electrondense cytoplasm and several long, apical microvilli extending into the oral cavity. Type II cells possess several short microvilli of uniform length extending into the taste pore. The nuclei of type III cells are slender and possess prominent invaginations. Two distinguishing features of type III cells are the single blunt microvillus that extends into the taste pore and the presence of synapses onto nerve processes [11,13,14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call