Abstract

To understand the mechanisms governing oocyte maturation better, the effects of the gonadotropin surge were studied on follicular cells of bovine preovulatory follicles. For this purpose, qualitative and quantitative changes in protein synthesis by both granulosa cells and cumulus cells were compared relative to the luteinizing hormone (LH) surge and the resumption of meiosis in the oocyte. Follicular cells were collected at different times before and up to 25 hr after the LH surge. For each individual preovulatory follicle, granulosa and cumulus cells were incubated separately for 3 hr with 3H-methionine or with 35S-methionine. Newly synthesized cytosolic proteins from granulosa and cumulus cells and proteins secreted into the medium were analyzed by polyacrylamide gel electrophoresis. The radioactivity was measured by liquid scintillation counting after slicing of the gels or revealed by fluorography. Three major peaks of the newly synthesized proteins, with molecular weights of 76, 56, and 30 kDa, were studied throughout the preovulatory period. After the LH surge, the overall level of protein synthesis increased in granulosa cells. In addition, the pattern of cytosolic proteins in granulosa cells changed, and, in particular, the relative synthesis of the 30 kDa peak decreased. These changes in cytosolic protein synthesis may be due to the action of LH since they could be reproduced in vitro in LH-stimulated granulosa cells. A predominant peak of 56 kDa was secreted by granulosa cells throughout the experimental period. No significant change was observed in proteins synthesized by cumulus cells under the same experimental conditions. The amounts of radioactivity incorporated into the three major proteins secreted by granulosa cells, however, were correlated significantly with the amounts of radioactivity incorporated by similar proteins synthesized by cumulus cells. These results indicate that cumulus cells respond differently from granulosa cells to the gonadotropin surge but not in an independent manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.