Abstract

The carcinogenicity of 2,3,7,8-TCDD at multiple organ sites in animals has been well established by several cancer bioassays. Results of two of the most notable of these, the Kociba et al. (1978) rat feeding study and the National Toxicology Program (1980) gavage study in rats and mice showed hepatocellular carcinomas in two strains of female rats and male and female mice. Other tumor sites included carcinomas of the lung, tongue, hard palate and nasal turbinates, thyroid, and subcutaneous tissue. The evidence for carcinogenicity of 2,3,7,8-TCDD in animals is regarded as “sufficient” using the classification system of the International Agency for Research on Cancer (IARC). Two Swedish epidemiologic case-control studies (Hardell and Sandstrom, 1979; Eriksson et al. 1979, 1981) reported a significant five- to sevenfold excess risk of soft-tissue sarcomas (STS) from occupational exposure to chlorinated phenoxyacetic acid herbicides and/or chlorophenols. Additionally, several small cohort studies collectively exhibited an unusual cluster of STS, significantly increased over combined expected incidence. Problems with these studies do not appear to be sufficient to discount this excess risk. The human evidence alone for the carcinogenicity of 2,3,7,8-TCDD is “inadequate” using the IARC classification. However, for 2,3,7,8-TCDD in combination with chlorinated phenoxyacetic acid herbicides and/or chlorophenols, the human evidence is considered to be “limited.” The overall evidence for carcinogenicity considering both animal and human studies would place 2,3,7,8-TCDD alone in the IARC category 2B, meaning that the substance is probably carcinogenic in humans. The overall weight of evidence for 2,3,7,8-TCDD in combination with chlorinated phenoxyacetic acid herbicides and/or chlorophenols is regarded as IARC category 2A, also meaning that they are probably carcinogenic for humans. Using current EPA methodology for quantitatively estimating cancer risks, several animal data sets have been analyzed. Comparing the results, the upper-limit incremental unit risk estimate is 1.6 × 10 −2 for a lifetime exposure of 1 ng/kg/day. This estimate is derived from a lifetime feeding study (Kociba et al., 1978) in which 2,3,7,8-TCDD induced tumors of the liver, lungs, hard palate, and nasal turbinates in female rats. Incremental unit cancer risks are also extrapolated for lifetime 2,3,7,8-TCDD exposures in water and air. Based on continuous lifetime exposure to 1 ng/L 2,3,7,8-TCDD in drinking water, the upper-limit estimate of extra cancer risk per individual is 4.5 × 10 −3. For lifetime exposure to 1 pg 2,3,7,8-TCDD/m 3 in the ambient air, the upper-limit individual risk is 3.3 × 10 −5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call