Abstract

The risk of eukaryotic microorganisms in drinking water treatment has not received sufficient attention. As the final step in ensuring drinking water quality, the effectiveness of disinfection in inactivating eukaryotic microorganisms remains to be qualitatively and quantitatively demonstrated. In this study, we conducted a meta-analysis using a mixed effects model and bootstrapping analysis to assess the effects of the disinfection process on eukaryotic microorganisms. The results revealed significant reduction of eukaryotic microorganisms in drinking water associated with the disinfection process. The estimated logarithmic reduction rates for chlorination, ozone, and UV disinfection were 1.74, 1.82 and 2.15 log, respectively, for all eukaryotic microorganisms. Analysis of relative abundance variation of eukaryotic microorganisms also indicated certain phyla and classes exhibited tolerance and competitive advantage during disinfection. This study provides qualitatively and quantitatively analysis on the influence of drinking water disinfection processes on eukaryotic microorganisms, and highlights the persistent risk of eukaryotic microbial contamination in drinking water even after disinfection, calling for further optimization of current conventional disinfection methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.