Abstract
In different industrial applications, several strictly defined parameters of calcium-based microfillers such as average particle size, particle size distribution, morphology, specific surface area, polymorphism and chemical purity, play a key role in the determination of its usefulness and effectiveness. Therefore, an analytical tool is required for rapid and non-destructive characterization of calcium-based microfillers during the synthesis process or before its use in a further manufacturing process. Since spectroscopic techniques are preferred over microscopy and thermogravimetry, particularly due to its non-destructive nature and short analysis time, we applied terahertz (THz) spectroscopy to analyse calcite microfillers concentration in polymer matrix, its granulation and chemical treatment. Based on the analysis of peak absorbance amplitude, peak frequency position, and the appearance of additional spectral features, quantitative and qualitative analysis was successfully achieved. In addition, THz imaging was also applied for both quantitative and qualitative analysis of calcium-based microfillers. By using spatial distribution map, the inhomogeneity in concentration of calcium carbonate in polymer matrix was characterized. Moreover, by THz spectroscopy and imaging different calcium compounds were detected in binary mixtures. Finally, we demonstrated that the applied spectroscopic technique offers valuable results and can be, in combination with other spectroscopic and microscopic techniques, converted to a powerful rapid analytical tool.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.