Abstract

Removal of heavy metals (e.g., Cd) from contaminated water using waste-converted adsorbents is promising, but the efficiency still needs to be improved. Here, we prepared a functional biochar composite as novel Cd adsorbents by co-pyrolysis of two typical solid wastes, i.e., agricultural corn straw and industrial fly ash. The adsorption behavior and mechanism were investigated using batch and column adsorption experiments and modern characterization techniques. Results showed that alkali-modified fly ash (AMFA) was loaded onto the surface of the corn straw biochar as some fine particle forms, with quartz (SiO2) and silicate being the main mineral phases on the surface. The maximum sorption capacity fitted by Langmuir model for functionalized biochar composite (FBC700) was up to 137.1 mg g−1, which was 7.7 times higher than that of the original corn straw biochar (BC700). Spectroscopic analysis revealed that adsorption mechanisms of Cd onto the FBC700 included mainly precipitation and ion exchange, with complexation and Cd-π interaction also contributing. The AMFA could effectively improve the mineral precipitation with Cd. The adsorption columns filled with FBC700 exhibited a longer breakthrough time than that filled with BC700. The adsorption capacity calculated by Thomas model for FBC700 was also approximately 6.0 times higher than that for BC700, showing that FBC700 was more suited to practical applications. This study provided a novel perspective for recycling solid wastes and treating Cd-contaminated water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.