Abstract

Isotropic and spatially homogeneous viscous fluid cosmological models are investigated using the truncated Israel-Stewart theory of irreversible thermodynamics to model the bulk viscous pressure. The governing system of differential equations is written in terms of dimensionless variables and a set of dimensionless equations of state is then utilized to complete the system. The resulting dynamical system is analysed using geometric techniques from dynamical systems theory to find the qualitative behaviour of the Friedmann-Robertson-Walker models with bulk viscosity. In these models there exists a free parameter such that the qualitative behaviour of the models can be quite different (for certain ranges of values of this parameter) from that found in models satisfying the Eckart theory studied previously. In addition, the conditions under which the models inflate are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.