Abstract

Bacillus spp. produce a broad spectrum of lipopeptide biosurfactants, among which surfactin, iturin and fengycin are widely studied families. The goals of this study were to characterize the biosurfactant activity of Bacillus spp. and to investigate their motility and biofilm formation capabilities. In addition, we extracted lipopeptides from these bacteria to assess their antifungal activities and analyzed these products by mass spectrometry (MS). B. amyloliquefaciens FZB42, Bacillus sp. NH 217 and B. subtilis NH-100 exhibited excellent biosurfactant and surface spreading activities, whereas B. atrophaeus 176s and Paenibacillus polymyxa C1225 showed moderate activity, and B. subtilis 168 showed no activity. Strains FZB42, NH-100, NH-217, 176s and CC125 exhibited excellent biofilm formation capabilities. Lipopeptide extracts displayed good antifungal activity against various phytopathogens and their associated diseases, such as Fusarium moniliforme (rice bakanae disease), Fusarium oxysporum (root rot), Fusarium solani (root rot) and Trichoderma atroviride (ear rot and root rot). Lipopeptide extracts of these strains also showed hemolytic activity, demonstrating their strong potential to produce surfactants. LCMS-ESI analyses identified the presence of surfactin, iturin and fengycin in the extracts of Bacillus strains. Thus, the strains assayed in this study show potential as biocontrol agents against various Fusarium and Trichoderma species.

Highlights

  • Bacillus species produce a wide variety of antifungal and antimicrobial compounds [1], making them ideal biological control agents [2]

  • The strains FZB42, NH-100 and NH-217 showed further spreading from the inoculation sites compared to the 176s, CC125 and 168 strains

  • Biofilm formation was highest in the FZB42 strain, while strains NH-100, NH217,176s and CCI25 exhibited good biofilm formation (Table 1)

Read more

Summary

Introduction

Bacillus species produce a wide variety of antifungal and antimicrobial compounds [1], making them ideal biological control agents [2]. The ability of different Bacillus species to prevent several plant diseases has resulted in the commercial development and registration of several Bacillus pest management bioproducts that can be integrated into pest management regimens to efficiently control plant diseases [3]. B. amyloliquefaciens, B. subtilis, and B. atrophaeus have the potential to produce secondary metabolites, cyclic lipopeptides, such as iturin, fengycin and surfactin, which have tremendous potential applications in the agriculture, pharmaceutical and biotechnology industries due to their dynamic surface properties [4, 5]. Physiological and biochemical characterization of lipopeptide producing Bacillus spp. The authors are thankful to AJE (American Journal Experts) services for improving the English and readability of the manuscript

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.