Abstract

We apply the theory of planar dynamical systems to carry out a qualitative analysis for the planar dynamical system corresponding to the fluidized-bed modelling equation. We obtain the global phase portraits of this system under various parameter conditions and the existence conditions of bounded travelling-wave solutions of this equation. According to the discussion on relationships between the behaviours of bounded travelling-wave solutions and the dissipation coefficients ε and δ, we find a critical value λ0 for arbitrary travelling-wave velocity υ. This equation has a unique damped oscillatory solution as ∥ε + δυ∥ < λ0 and ∥ε + δυ∥ ≠ 0, while it has a unique monotone kink profile solitary-wave solution as ∥ε + δυ∥ > λ0. By means of the undetermined coefficients method, we obtain the exact bell profile solitary-wave solution and monotone kink profile solitary-wave solution. Meanwhile, we obtain the approximate damped oscillatory solution. We point out the positions of these solutions in the global phase portraits. Finally, based on integral equations that reflect the relationships between the approximate damped oscillatory solutions and the implicit exact damped oscillatory solutions, error estimates for the approximate damped oscillatory solutions are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call