Abstract

This paper describes an SIR model with logistic growth rate of susceptible population, non-monotonic incidence rate and saturated treatment rate. The existence and stability analysis of equilibria have been investigated. It has been shown that the disease free equilibrium point (DFE) is globally asymptotically stable if the basic reproduction number is less than unity and the transmission rate of infection less than some threshold. The system exhibits the transcritical bifurcation at DFE with respect to the cure rate. We have also found the condition for occurring the backward bifurcation, which implies the value of basic reproduction number less than unity is not enough to eradicate the disease. Stability or instability of different endemic equilibria has been shown analytically. The system also experiences the saddle-node and Hopf bifurcation. The existence of Bogdanov-Takens bifurcation (BT) of co-dimension 2 has been investigated which has also been shown through numerical simulations. Here we have used two control functions, one is vaccination control and other is treatment control. We have solved the optimal control problem both analytically and numerically. Finally, the efficiency analysis has been used to determine the best control strategy among vaccination and treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.