Abstract

Human-machine systems required a deep understanding of human behaviors. Most existing research on action recognition has focused on discriminating between different actions, however, the quality of executing an action has received little attention thus far. In this paper, we study the quality assessment of driving behaviors and present WiQ, a system to assess the quality of actions based on radio signals. This system includes three key components, a deep neural network based learning engine to extract the quality information from the changes of signal strength, a gradient based method to detect the signal boundary for an individual action, and an activitybased fusion policy to improve the recognition performance in a noisy environment. By using the quality information, WiQ can differentiate a triple body status with an accuracy of 97%, while for identification among 15 drivers, the average accuracy is 88%. Our results show that, via dedicated analysis of radio signals, a fine-grained action characterization can be achieved, which can facilitate a large variety of applications, such as smart driving assistants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.