Abstract
Predicting future mean precipitation poses significant challenges due to uncertainties among climate models, complicating water resource management. In this study, we introduce a novel methodology to mitigate uncertainty in future mean precipitation projections over China on a grid-by-grid basis. By constraining precipitation parameters of the Gamma distribution, we establish emergent constraints on parameters, revealing significant correlations between historical and future simulations. Our analysis spans the periods 2040–2069 and 2070–2099 under low-to-moderate and high emission scenarios. We observe reductions in uncertainty across most regions of China, with constrained mean precipitation indicating increases in monsoon regions and decreases in non-monsoon zones relative to raw projections. Notably, the observed 30%–40% increase in mean precipitation for the whole of China underscores the efficacy of our methodology. These observationally constrained results provide valuable insights into current precipitation projections, offering actionable information for water resource planning and climate adaptation strategies amidst future uncertainties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.