Abstract
Experiments from May to December measuring selective grazing and egestion of different phytoplankton taxa in natural Saginaw Bay (Lake Huron) seston by shallow-water morph quagga mussels (Dreissena bugensis rostriformis) showed that the mussels were highly selective filter feeders and that their net clearance rates on different species ranged widely, resulting in food consumption that was strongly driven by seasonal phytoplankton dynamics. Overall, net clearance rates by quagga mussels on the entire phytoplankton assemblage were similar to those observed for zebra mussels (Dreissena polymorpha) during the 1990s. Phytoplankton taxon, rather than size, was more important to food selection since quagga mussels cleared similar sized but different species of algae at very different rates. In contrast to many studies with zebra mussels, larger-sized algae such as Dinobryon divergens, Aulacoseira italica, Fragilaria crotonensis, and Anabaena were cleared at high rates and rejected at lower rates than many smaller species within the same broad taxonomic group. We suspect that these differences between dreissenid species do not stem from species differences but methodological factors and phytoplankton composition of systems studied. Small-sized diatoms, green algae with thick cell walls (Scenedesmus and Oocystis), and colonial cyanobacteria with gelatinous sheaths (Aphanocapsa, Chroococcus, and Microcystis) were cleared at low rates and rejected in high proportion in pseudofeces or feces during all seasons. We describe the likely mechanisms of pre- and post-ingestive behavior that explain these differences, which relate to phytoplankton size, morphology, cell wall characteristics, and chemical composition. Changes in the Great Lakes phytoplankton communities are consistent with mussel grazing preferences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.